Technology for Frequency Agile Digitally **Synthesized Transmitters**

(TFAST) **Emitter Metal** Base Metal **Emitter** Base Collector **NEW PARADIGM** SI-substrate Performance $0.5 \, \mu m$ Schematic TFAST Scalable InP HBT **Scaling barrier** ntegration barrier 3x higher circuit speed $1.0 \mu m$ **Base Metal Emitter Metal** 10x higher integration Collector Base metal 10x lower power collector Sub-collector SI-InP substrate 5000

Integration (# transistors)

Concept Briefing to Industry

John C. Zolper DARPA/MTC 703-696-7039 izolper@darpa.mi

Conventional Mesa InP HBT

TFAST: Super Scaled InP HBT Technology

Mixed Signal Transistor Figure of Merit:

$$(1) f_t, f_{\text{max}} \quad (2) \frac{J_C V_{CEO}}{C_{cb} \Delta V_{LOCIC}}$$

Current InP Mesa HBT circuit performance is limited by scaling and integration

Microsystems Technology Office_

InP HBT Present Technology

Mesa HBT today

- + Low capacitance
- + Low base resistance
- Inherent limitation on minimum feature size
- Poor thermal dissipation
- Limited emitter contact
- Limited current capability
- Process limits integration

Potential Phase I Milestones

Metric	today	18 month	TFAST
		Go/No-Go	Goals
Emitter width (μm) ⁽¹⁾	1.0	0.25	0.15
f _t /f _{max} (GHz) ⁽¹⁾	200/200	350/400	500/500
J (kA/cm²) (at fixed V _{CE}) ⁽¹⁾	200	600	1000
Flip flop speed (GHz) (at fixed power)	75	150	250
SSI circuit validation		TBD	TBD
Integrated transistor count and yield (current InP mesa HBT: ~2000, ~50% yield)	0 (super-scaled HBT)	1000 Identify yield Iimiters ⁽²⁾	>20,000 quantify yield limiters ⁽²⁾

- (1) must be achieved simultaneously and with $V_{ceo} \ge 4V$
- (2) will establish critical metrics for Phase II

TFAST Application Impact (Phase II): mmWave Direct Digital Synthesis Mixed Signal Circuits

- Agile, reconfigurable mm-wave transmitters
- 10 times lower power at current performance
- Higher dynamic range via more complex circuits with higher output voltage
- In-combat programmable Electronic Warfare jammers
- Covert mm-wave frequency hopping Comms
- In-flight reprogrammable SATCOMM links

Microsvstems Technoloav Office

 Reduced parts count and stability with digital versus analog frequency generation (reduced analog tuning required)

Additional Applications

- Core mixed signal technology will also enable high performance ADC
- Technology push should considers ADC as well as DDS type application where possible

